
Getting Started
Workshop
The Workshop is made up of blocks (grey area located on the left) and the main workspace (dotted area
in the center). Blocks are divided into categories based on their function. There should only be one
Repeated Strategy block on the workspace, and any blocks on the workspace must be inside the
Repeated Strategy block. Make sure blocks are properly connected and that no loose blocks are lying
around.

These blocks abstract code into everyday language. Connected blocks specify a set of instructions that
will be translated into code. The blocks have special shapes, and they can only be connected to other
blocks of the same shape. Some blocks are even more particular and will only connect to values of a
certain type or range. Furthermore, these blocks safeguard against some logical errors by preventing
blocks that don’t make sense together from connecting.

Example: Since “0 > true” doesn’t make any logical sense, the blocks are prevented from connecting
together.

Use the provided blocks to create a set of directions based on different conditions. Remember, the goal
is to specify a set of actions for every scenario you could possibly encounter.

Stuck? See here for general troubleshooting tips.

Blockly Tutorial
General Blocks
Hover over the block for its description.

Changing the number of inputs and connections

Blocks with the settings symbol on the
top-left corner can be configured to
increase/decrease the number of inputs
and connections.

Changing block values with dropdowns

Simply click on the dropdown to select other available values.

Custom Game Theory Blocks
(See Figure 1)

History Access
Type Blocks Input Output

Action
Access

period(s)
cannot
exceed the
number of
periods so
far

Returns an action
(i.e. Cooperate/Defect).

Payoff
Access

Returns a value based on the
payoff matrix in that period.

Current
Position

- The current position/period in
the game (i.e. an integer ≥ 1).

Action Block
Field Description Input(s) Explanation

1. Regular
(non-probabili
stic)

An action (i.e.
Defect/
Cooperate).

Sets the strategy's
action for the current
period.

2.Probabilistic

1. Action a.
2. Probability 0
≤ x ≤ 100

Note: the last two fields
are not editable. They
ensure the probabilities
sum to 1 and that every
action is accounted for.

Examples
1. With regular (non-probabilistic) action block. (See Figure 2)
2. With probabilistic action block. (See Figure 3)

Repeated Strategy Block
The Repeated Strategy block encapsulates all strategies. Example (See Figure 2).

Field Description Requirement
strategy name The name of your strategy. Names cannot have any spaces between them.
user code All blocks used must go inside

this section.
Requires the Set action to block at the bare
minimum.

Variables
Variables are assigned a value. They can be used as a flag or to keep track of values. The use of variables
simplify the steps needed to access data.

Using a Variable

Step Image Description
1

Click the settings icon and drag the
variables (optional) block to modify the
Repeated Strategy block.

2

Go to Create Strategy Variable and give
your variable a name.

3 Once the variable is created, it will
appear in the Variable tab. Use the Set
block to give it an initial value in the
variables(optional) section.

4

Use the Set and/or the variable's input
connector as desired.

(5)

Variables can be edited/deleted by
clicking on the name.

Examples

1. Tit for Tat Strategy - Using history blocks and current period . (See Figure 4)
2. Repeated Pattern - Using remainder in Math blocks for the repetition. (See Figure 5)
3. Variables - Using a variable to keep track of a value or as a flag. (See Figure 6)

*Note: There are multiple ways of implementing these strategies. These examples show just one way
the blocks can be used to construct certain strategies.

Figures
1. Blocks in the Game Theory tab.

2. Example implementation of all_C (always cooperate) strategy.

3. Example implementation of random_choice strategy (i.e. cooperate/defect with equal

probability).

4. Example implementation of tit_for_tat strategy.

5. Example implementation of per_ccd (cooperate-cooperate-defect) strategy.

6. Example implementation of better_and_better strategy. Variable probability is used to keep
track of which probability% to play for clarity.

General Troubleshooting
Floating Blocks

1. Avoid having any blocks outside of the Repeated Strategy block.
2. Avoid having multiple Repeated Strategy blocks. There should only be one in a workspace at a

time.

Do Don’t

Undefined Behaviors
1. Make sure an action is defined for ALL possible cases, especially in if-else cases.

Problem Sample Screenshot
Action not
defined for the
case where the
first condition
(orange arrow)
is true and the
second
condition
(yellow arrow)
is false.

Fix

Indexing
1. Make sure the referenced period is greater than the current period.

Problem Sample Screenshot
Unable to
find
opponent's
action one
period ago
at the first
period.

Referenced
period of

100 periods
ago is

greater than
the current

period
(10th).

2. Keep in mind: Blocks go by one-based indexing (i.e. periods start at 1).

Step-by-Step Example: Strategy Creation
Let’s take the strategy Prober as an example.

Prober: Plays D, C, C initially. Cooperates forever if opponent played D then C in moves 2 and 3.
Otherwise plays TFT. (Source)

Part I: Plays D, C, C initially.
This means defecting (D) on the first round, then cooperating (C) on the second and third round.

I. Start by giving the strategy a name in the strategy name box.

II. Create our first condition: play D in the first round.
A. First, take out the if, do block from the Conditions category. Make sure it is connected to

the Repeated Strategy block.

B. Then, add the condition: if current period is equal to 1, play action D (defect).

Make sure to change the default values in the numbers and action blocks to the desired values (i.e.
change 0 in numbers to 1 and Cooperate in actions to Defect).

https://axelrod.readthedocs.io/en/stable/reference/all_strategies.html#axelrod.strategies.prober.Prober

III. Create our second condition: play C in the second and third round.
A. Add another condition to the if/do block.

B. We will need an or condition to check for periods 2 or 3. Create one using the and/or
block from the Conditions category.

C. Fill out the or condition and add it to the block.

*** Checkpoint: we’ve now created a strategy that says: Defect in the first round, then cooperate in the
second and third round.

Part II: Cooperates forever if opponent played D then C in moves 2 and
3. Otherwise plays TFT
Depending on whether the opponent played D and C in the second and third round, we will take two
courses of actions.

IV. Add another condition: if the opponent played D and C in the second and third round.
A. Add another else if condition:

V. Introduce a variable to keep track of whether the opponent played D and C in the

second and third round.
Reminder: Variables keep track of values. The variable will keep track of whether our strategy
should cooperate forever or play tit-for-tat for the remainder of the game.

A. Add a variable. We will call it play_tft_forever (where tft is tit-for-tat).

B. Give the variable an initial value.
i.e. We will play tit-for-tat forever unless something happens (something being the
opponent playing D then C in the second and third round).

VI. Update the variable when the condition to play tit-for-tat forever changes
i.e. If the opponent played D then C in the second and third round, we will not play tit-for-tat
forever anymore.

A. In the fourth round, check the opponent’s actions in rounds 2 and 3.

B. Since we will cooperate forever if the opponent’s action in rounds 2 and 3 is D then C,

we will have to change our variable play_tft_forever to false.

C. Now, in the fourth round, we can decide which action to play based on the value of our
play_tft_forever variable.

If the play_tft_forever variable is true, then we play tit-for-tat (i.e. the opponent’s
previous action). Otherwise, we will set our action to Cooperate.

VII. Play an action based on the value of our variable.
A. From the 4th period onwards, the action we play won’t change. We can simply refer to

the variable to determine which action to play.

An else case is added as a catch-all condition. Any round after the 4th round shall be
treated the same.

See image below.

*** Self Check: We’ve created a strategy that specifies an action for every single round, and handles
every scenario the opponent could play.

